Syllabus: Integral In-Differential Calculus, Vectors, 3D, Quadratic Equation, Sequence and Series, Binomial Theorem

MATHS

Section I

Straight objective type

This section contains 8 multiple-choice questions numbered 1 to 8. Each question has 4 choices (A), (B), (C) and (D), out of which **only ONE** is correct.

1. Consider $f(x) = \begin{bmatrix} f(x) & |x| \ge i \\ x^x + b & |x| \le i \end{bmatrix}$. If equation of tangent at x = -1 is x - y + 2 = 0 while

equation of tangent at x = 1 is x + y - 2 = 0 then

$$(a)_{a} = -\frac{1}{2} \oint_{2} b = \frac{3}{2} \qquad (b)_{a} = -\frac{1}{2} \oint_{2} b = -\frac{2}{3} \qquad (c)_{a} = \frac{1}{2} \oint_{2} b = \frac{3}{2} \qquad (d)_{a} = \frac{1}{2} \oint_{2} b = \frac{3}{2}$$

2. If $|\cos^{-1} 1/n| < \pi/2$ then

4.

$$\lim_{n \to \infty} ((n+1)^{\frac{2}{\pi}} \cos^{-1} \frac{1}{n} - n) \text{ is } eq \ u \text{ all } to$$

$$(a)^{\frac{2}{\pi}} \frac{\pi}{\pi} \qquad (b)^{\frac{\pi}{2}} \frac{\pi}{\pi} \qquad (c)n \qquad (d)o$$
3. Let $f(x) = \sum_{x=1}^{n} \frac{1}{2x} - t | dt \qquad ; \ x \le 0$

$$\lim_{x \to \infty} \frac{1}{2x} - t | dt \qquad ; \ x < x < 2$$

then, value of 'a' and 'b' for which f(x) is continuous function at x = 0 and x = 2.

$$(a)_{a} = -1, \ b = \frac{1}{\sqrt{2}} \qquad (b)_{a} = -e^{\frac{1}{2}}, \ b = 0 \qquad (c)_{a} = 1, \ b = -\frac{1}{\sqrt{2}} \qquad (d)_{a} = -1, \ b = 0$$
Let a, b, c \in R such that no two of them are equal and satisfy $\begin{vmatrix} x & a & b & c \\ b & c & x & a \\ c & x & a & b \end{vmatrix} = 0$ then equation

$$24ax^{2} + 4bx + c = 0$$
 has
(b) at least one in [1/2, 1]

(c) at least one in [0, 1/2] (d) exacting one in [0, 1]

5. Which of the following does not represent a straight line (a) ax + by + cz + d = 0, a'x + by + cz + d = 0 (a \neq a') (b) ax + by + cz + d = 0, ax + b'y + cz + d = 0 (b \neq b') (c) ax + by + cz + d = 0, ax + by + c'z + d = 0 (c \neq c') (d) ax + by + cz + d = 0, ax + by + cz + d' = 0 (d \neq d') 6. $\oint \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (x) \sin t dt = \cosh t an t; x \in (0, 2\pi) and f(\pi) = 2, then f = \frac{1}{2}$ 7. $\int_{-\infty}^{\infty} \sum_{n=1}^{\infty} (x) \sin t dt = \cosh t an t; x \in (0, 2\pi) and f(\pi) = 2, then f = \frac{1}{2}$ 7. $\int_{-\infty}^{\infty} \sum_{n=1}^{\infty} \frac{(x) - 1}{\sqrt{2} + 1} \qquad (c) - \frac{(a) - 1}{\sqrt{2} + 1} dx \text{ is equal to } - \frac{(a) - 1}{\sqrt{2} + 1} dx \text{ is equal to } - \frac{(a) - 1}{2} - \frac{x^2}{2} - \frac{x}{2} |Gsin x + \cos x| f + C \qquad (b) - \frac{x^2}{2} - \frac{x}{2} |Gsin x + \cos x| f + C \qquad (d) - \frac{x}{2} - \frac{x}{2} |Gsin$

2

C₁₃₋₁₅: Paragraph for Question Nos. 13 – 15

If $f(x) = Mid \{g(x), h(x), p(x)\}$ means the function which will be second in order when values of the three function at a particular x are arranged?

$$f(x) = \mathcal{M}_{d} \begin{bmatrix} -1, (x-3)^{k}, 3 - \frac{(x-3)^{k}}{2} \end{bmatrix} = \begin{bmatrix} 1, 4 \end{bmatrix}$$

- 13. Numerical value of difference between the LHD and RHD at the point x = 2 of f(x) in $x \in [1, 4]$ will be (a) 0 (b) 2 (c) 3 (d) 1
- 14.The greatest value of f(x) in [1, 4] will be
(a) $1 + \sqrt{3}$ (b) $2 + \sqrt{3}$ (c) $3 + \sqrt{3}$ (d) None of these15.Rate of change of x w.r.t f(x) at x = 3 will be
 - (a) 1 (b) 3/2 (c) 2 (d) -3/2

C₁₆₋₁₈: Paragraph for Question Nos. 16 – 18

Let A, B, C-be the vertices of a triangle ABC in which B is taken as origin of reference and position vectors of A and C are α and c respectively. A line AR parallel to BC is drawn from A. PR (P is mid point of AB) meets AC at Q and area of triangle ACR is 2 times area of triangle ABC.

DISHA CLASSES

Guiding you to Success

3

16.	Position vector of R in $(a) a + 2c$	terms of and is $(f_{a})_{a} + g_{c}$	(c) a+c	(d) a + 4 c		
17.	Position vector of Q is					
	$\binom{a}{2} \frac{2a+3c}{5}$	$(5) \frac{3 a + 2 c}{5}$	$(c) \frac{a+2c}{5}$	(d) none of these.		
18.	s equal to					
	$(a)\frac{1}{6}$	(F) ¹ / ₅	$(c) \frac{1}{2}$	$(d)^{\frac{2}{3}}$		

Section V

Matching type: Multiple matching may be there. (+8/ 0)This section contains 2 questions. And the questions contains statements given in two columns which have
to be matched. Statements (a, b, c, d) in Column I have to be matched with Statements (p, q, r, s) in
Column II.19.Column IColumn IColumn I

19.	Column I Column I		olumn II		
	(a) The dimensions of the rectangle of perimeter 36 cm, which sweeps out the largest volume when revolved about one of its sides, are	(p)	6		
	(b) Let A(-1, 2) and B (2,3) be two fixed points, A point P lying on y = x such that perimeter of triangle PAB is minimum then sum of the abscissa and ordinate of point P, is	(q) ı,	12		
	(c) If $x_1 \& x_2$ are abscissae of two points on the curve $f(x) = x - x^2$ in the interval [0, 1], then maximum value of expression $(x_1 + x_2) - (x_1^2 + x_2^2)$ is		(r)	4	
	(d) The number of non- zero integral values of 'a' for which the	(s)	1/2		
	function $f(x) = x^4 + ax^3 + \frac{3x^2}{2} + ax^3 + \frac{3x^2}{2} + ax^3 + a$	ng			
	the entire real line is				
20.	$\mathcal{I}_{\theta} t f(x) = \frac{x^2 - \epsilon x + 5}{x^2 - 5 x + \epsilon}$				
	Column I	Column II			
	(a) If $-1 < x < 1$, then f(x) satisfies (b) If $1 < x < 2$, then f(x) satisfies		(p) $0 < f(x) < 1$ (q) $f(x) < 0$		
	(c) If $3 < x < 5$, then f(x) satisfies (r) f(x):				
	(d) If $x > 5$, then $f(x)$ satisfies	(s) f(x)	< 1		