Syllabus: Integral In-Differential Calculus, Vectors, 3D, Quadratic Equation, Sequence and Series, Binomial Theorem

MATHS

Section I

Straight objective type

This section contains 8 multiple-choice questions numbered 1 to 8 . Each question has 4 choices (A), (B), (C) and (D), out of which only ONE is correct.
 equation of tangent at $x=1$ is $x+y-2=0$ then
$(a)_{a}=-\frac{1}{2} \& b=\frac{3}{2}$
$(b)_{a}=-\frac{1}{2} \& b=-\frac{2}{3}$
(c) $)_{a}=\frac{1}{2} \& E=\frac{3}{2} \quad$ (d) ${ }_{a}=\frac{1}{2} \& E=\frac{3}{2}$
2. If $\left|\cos ^{-1} 1 / n\right|<\pi / 2$ then
$\lim _{n \rightarrow \infty}\left((n+1)^{2} \frac{\cos ^{-1}}{\pi} \frac{1}{n}-n\right)$ is equafto
3.

then, value of ' a ' and ' b ' for which $f(x)$ is continuous function at $x=0$ and $x=2$.

$$
\text { (a) })_{a}=-1, b=\frac{1}{\sqrt{2}} \quad(b)_{a}=-e^{2}, b=0 \quad(c)_{a=1, b}=-\frac{1}{\sqrt{2}} \quad(d)_{a}=-1, b=0
$$

(a) at least one in $[-1 / 2,0]$
(b) at least one in [1/2, 1]
(c) at least one in $[0,1 / 2]$
(d) exacting one in $[0,1]$
5. Which of the following does not represent a straight line
(a) $a x+b y+c z+d=0, a^{\prime} x+b y+c z+d=0\left(a \neq a^{\prime}\right)$
(b) $a x+b y+c z+d=0, a x+b \prime y+c z+d=0(b \neq b \prime)$
(c) $a x+b y+c z+d=0, a x+b y+c^{\prime} z+d=0\left(c \neq c^{\prime}\right)$
(d) $a x+b y+c z+d=0, a x+b y+c z+d^{\prime}=0\left(d \neq d^{\prime}\right)$
6. $\mathscr{f} \not \subset(x)_{\sin t d t}=$ constan $t ; x \in(0,2 \pi)_{\text {and }} f(\pi)=2$, then f
(a) $\frac{1}{\sqrt{2}}$
(6) $\frac{1}{\sqrt{2}+1}$
(c) ${ }_{2}$
$(d)_{4}$
7. $\quad \frac{\sqrt{2} x^{2} \tan x}{x \tan x+1}$ dx is equafto-
(a) $\frac{x^{2}}{2}+\mathscr{F}$
C
$+\infty \times \frac{h-\sigma}{}$
${ }^{(5)} \frac{x^{2}}{2}-x_{1} \boldsymbol{b}_{\tan x+} \boldsymbol{g}_{+6}$
(c) $\left.\frac{x^{2}}{2}-5 \right\rvert\, \operatorname{cosin} x+\cos x \ln -6$

8.

(a) $-\frac{\pi}{2} f_{n} \pi$
(5)
(c) $\frac{\pi}{2} f_{n 2}$
(d) We ne of these
Section - II
Straight Objective Type (More than one options may be correct) ($\mathbf{+ 4 , 0)}$
9.

(a) ${ }_{n} \in \mathscr{V}_{n}=1$
($\left.{ }^{(}\right)_{m} \in \mathscr{X X}_{n}={ }_{2}$
(c) $m_{m} \in \mathscr{X}_{n}=3$
$(d)_{m} \in \mathscr{X}{ }_{n}=\mathfrak{N}$.
10. Identify the statement(s) which is/are incorrect?

$$
\begin{aligned}
& \text { (a) } \overrightarrow{a x}^{\text {a }}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \vec{\rightarrow} \rightarrow \vec{\rightarrow} \rightarrow \vec{\rightarrow} \\
& \text { (d) } \mathscr{F}_{a, b}, c \text { and } a^{\prime}, b, c^{\prime} \text { are reciprocalsystem of vectorsthen } a \cdot b^{\prime}+b \cdot c^{\prime}+c, a^{\prime}=3
\end{aligned}
$$

11. A function $y=f(x)$ has five collinear points $\left(a_{1}, f\left(a_{1}\right)\right)$ where $I=1,2, \ldots . .5$ then
(a) f " $(x)=0$ for all values of x.
(b) f " $(x)=0$ for at least three values of x.
(c) $\mathrm{f}^{\text {" }}(\mathrm{x})=0$ for all values of x .
(d) $f^{\prime \prime \prime}(x)=0$ for at least two values of x.
12. Let $f(x)=\frac{3}{x-2}+\frac{4}{x-3}+\frac{5}{x-4}$, then $f(x)=0$ has
(a) exactly one real root in $(2,3)$
(b) exactly one real root in $(3,4)$
(c) at least one real root in $(2,3)$
(d) None of these

Section III

This section contains 2 paragraphs C_{13-15}, and C_{16-18}. Based upon each paragraph, 3 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

C_{13-15} : Paragraph for Question Nos. 13-15

If $f(x)=\operatorname{Mid}\{g(x), h(x), p(x)\}$ means the function which will be second in order when values of the three

$$
\text { function at a partigular } x \text { are arranged? }
$$

13. Numerical value of difference between the LHD and RHD at the point $x=2$ of $f(x)$ in $x \in[1,4]$ will be
(a) 0
(b) 2
(c) 3
(d) 1
14. The greatest value of $f(x)$ in $[1,4]$ will be
(a) $1+\sqrt{ } 3$
(b) $2+\sqrt{ } 3$
(c) $3+\sqrt{ } 3$
(d) None of these
15. Rate of change of x w.r.t $f(x)$ at $x=3$ will be
(a) 1
(b) $3 / 2$
(c) 2
(d) $-3 / 2$

$\mathrm{C}_{16 \text {-18 }}$: Paragraph for Question Nos. 16 - 18

Let A, B, C-be the vertices of a triangle $A B C$ in which B is taken as origin of reference and position vectors of A and C are ${ }_{a}$ and ${ }_{c}$ respectively. A line AR parallel to $B C$ is drawn from A. PR (P is mid point of $A B$) meets $A C$ at Q and area of triangle $A C R$ is 2 times area of triangle $A B C$.
16. Position vector of R in terms of and is
(a) $a+2 c$
(b) $a+3 c$
(c) ${ }_{a}+c$
(d) $a+4 c$
17. Position vector of Q is
(a) $\frac{2 a+3 c}{5}$
(b) $\frac{3 a+2 c}{5}$
(c) $\frac{a+2 c}{5}$
(d) none of these.
18.

(a) $\frac{1}{6}$
(5) $\frac{1}{5}$
(c) $\frac{1}{2}$
$(d) \frac{2}{3}$

Section V

Matching type: Multiple matching may be there. (+8/ 0)
This section contains 2 questions. And the questions contains statements given in two columns which have to be matched. Statements (a, b, c, d) in Column I have to be matched with Statements (p, q, r, s) in Column II.
19.

Column I

Column II

(a) The dimensions of the rectangle of perimeter 36 cm ,
(p) 6 which sweeps out the largest volume when revolved about one of its sides, are
(b) Let $A(-1,2)$ and $B(2,3)$ be two fixed points, A point P
(q) 12 lying on $y=x$ such that perimeter of triangle $P A B$ is minimum, then sum of the abscissa and ordinate of point P, is
(c) If $x_{1} \& x_{2}$ are abscissae of two points on the curve
(r) 4 $f(x)=x-x^{2}$ in the interval [0,1 , then maximum value of expression $\left(x_{1}+x_{2}\right)-\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)$ is
(d) The number of non- zero integral values of 'a' for which the (s) 1/2 function $f(x)=x^{4}+a x^{3}+\frac{3 x^{2}}{2}+1 \quad$ is concave upward along
the entire real line is
20. LL $\operatorname{Le} f(x)=\frac{x^{2}-6 x+5}{x^{2}-5 x+6}$

Column I
(a) If $-1<x<1$, then $f(x)$ satisfies
(b) If $1<x<2$, then $f(x)$ satisfies
(c) If $3<x<5$, then $f(x)$ satisfies
(d) If $x>5$, then $f(x)$ satisfies

Column II

(p) $0<f(x)<1$
(q) $f(x)<0$
(r) $f(x)>0$
(s) $f(x)<1$

