Syllabus: Organic (Complete), Chemical Kinetics, Electrochemistry, Liquid Solution, Solid State, Ionic Equilibrium, Chemical Equilibrium, Atomic Structure, Gaseous State, Nuclear Chemistry, Coordination-Compounds.

CHEMISTRY

Section I

Straight objective type

This section contains 8 multiple-choice questions numbered 1 to 8 . Each question has 4 choices (A), (B), (C) and (D), out of which only ONE is correct.

1. Two electro chemical cells are assembled in which the following reactions occur,
$\mathrm{V}^{2+}+\mathrm{VO}^{2+}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{~V}^{3+}+\mathrm{H}_{2} \mathrm{O} \quad ; \quad \mathrm{E}_{\text {cell }}^{0}=0.616 \mathrm{~V}$
$\mathrm{V}^{3+}+\mathrm{Ag}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{VO}^{2+}+2 \mathrm{H}^{+}+\mathrm{Ag}(\mathrm{s}) \quad ; \quad \mathrm{E}_{\text {cell }}^{0}=0.439 \mathrm{~V}$
Then E^{0} for the half reaction $\mathrm{V}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{V}^{2+}$, is: [Given : $\mathrm{E}^{0}{ }_{\mathrm{Ag}+\mid \mathrm{Ag}}=0.799 \mathrm{~V}$]
(a) -0.256 V
(b) +0.256 V
(c) -1.05 V
(d) +1.05 V
2. \quad For the cell reaction, $\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
(C_{1})
(C_{2})
of an electrochemical cell, the change in free energy ΔG at a given temperature is a function of:
(a) $\ln \left(\mathrm{C}_{1}\right)$
(b) $\ln \left(C_{2} / C_{1}\right)$
(c) $\ln \left(C_{1}+C_{2}\right)$
(d) $\ln \left(\mathrm{C}_{2}\right)$
3. The ionization constant of a weak electrolyte is 64×10^{-6} while the equivalent conductance of its 0.01 M solution is $20 \mathrm{~s} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$. The equivalent conductance of the electrolyte at infinite dilution (in $\mathrm{S} \mathrm{cm}^{2} \mathrm{eq}^{-1}$) will be:
(a) 250
(b) 196
(c) 392
(d) 384
4. An aqueous solution containing liquid $A(M . w t=128) 64 \%$ by weight has a V.P of 145 mm . If the vapour pressure of water is 155 mm then vapour pressure of A at the same temperature will be
(a) 205 mm
(b) 105 mm
(c) 185 mm
d) 52.5 mm
5. Liquids A and B form an ideal solution and the B has stronger intermolecular forces. If X_{A} and X_{A}^{\prime} are the mole fractions of A in the solution and vapour in equilibrium, then
(a) $\frac{x^{\prime} x_{z}}{\partial x}=1$
$(\bar{b})^{\frac{D_{x}}{d x}}>_{1}$
(c) $\frac{x_{x}}{d t}<1$
(d) $x_{x}+x_{x}=1$
6. two solutions each in 200 mL having 4 g glucose and 10 g sucrose respectively. How much urea should be added to one of them in order to make them isotonic ?
(a) 0.4218 g urea in glucose solution
(b) 0.77 g urea in glucose solution
(c) 0.72 g urea in sucrose solution
(d) 0.421 g urea in sucrose solution.
7. In a compound $\mathrm{XY}_{2} \mathrm{O}_{4}$, oxide ions are arranged in CCP and cations X are present in octahedral voids. Cations Y are equally distributed among octachedral and tetrahedral voids. The fraction of the octahedral voids occupied is
(a) $1 / 2$
(b) $1 / 4$
(c) $1 / 8$
(d) $1 / 6$
8. Solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ having $\mathrm{K}_{\text {sp }}$ equal to 8.9×10^{-13}, in a solution containing 500 ml of $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ and 500 ml of $0.4 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is
(a) 3.4×10^{-19}
(b) 55.63×10^{-13}
(c) 2.34×10^{-9}
(d) 8.34×10^{-13}

Section - II

Straight Objective Type (More than one options may be correct) $(\mathbf{+ 4}, \mathbf{0})$
9. Pick out the correct statements
(a) An electron accelerated through a potential difference of 150 volt has a wavelength of $1 \AA$.
(b) Uncertainty principle is applicable to subatomic particles.
(c) Electron microscope is based upon particle nature of moving electron
(d) de Broglie waves cannot be transmitted into space.

(a) A and D are isotopes
(b) B, C, D are isobars
(c) A and D are isobars but B, C, D are isotopes
(d) A and B are isotopes
11. Following are the wrong statements regarding the disproportionate of Tin (II) in non - complexing

(a) The disproportionation reaction Is hônspontaneous, hence Sn^{2+} is stable.
(b) The disproportionation reaction is spontaneous hance Sn^{2+} is unstable
(c) The disproportionation reaction is nonspontaneous and hence Sn^{2+} is unstable
(d) Both (B) and (C) are correct
12. During esterification reaction, which is the correct order of the rate of the reaction?
(a) $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}>\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{OH}>\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
(c) $\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{COOH}$
(d) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCOOH}$
Section III
This section contains 2 paragraphs C_{13-15}, and C_{16-18}. Based upon each paragraph, 3 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

C $_{13 \text { - 15: }}$ Paragraph for Question Nos. 13 - 15

The potential of any electrode is the potential difference it and the electrolyte surrounding the electrode. Standard reduction potential (E^{0}) of a system predicts.
(i) the relative reducing strength of reducing agents
(ii) the relative activity of the metals
(iii) whether a metal can displace H_{2} gas from a hydra acid or not
13. Given are the following half call reactions and the corresponding electrode potentials
(i) $\mathrm{A}+\mathrm{e}^{-} \leftrightarrows \mathrm{A}^{-} ; \mathrm{E}^{0}{ }_{1}=-0.24 \mathrm{~V}$
(ii) $\mathrm{B}^{+}+\mathrm{e}^{-} \leftrightarrows \mathrm{B}^{2-} \quad ; \mathrm{E}^{0}=1.32 \mathrm{~V}$
(iii) $\mathrm{C}^{-}+2 \mathrm{e}^{-} \leftrightarrows \mathrm{C}^{3-} ; \mathrm{E}^{0}{ }_{3}=-1.32 \mathrm{~V}$
(iv) $\mathrm{D}^{-}+2 \mathrm{e}^{-} \leftrightarrows \mathrm{D}^{2-} ; \mathrm{E}_{4}^{0}=0.65 \mathrm{~V}$

Which combination of the two half cells would result in a cell with a largest emf?
(a) $\mathrm{Pt}, \mathrm{C}^{-}\left|\mathrm{C}^{3-\|}\right|\left|\mathrm{B}^{-}\right| \mathrm{B}^{2-}, \mathrm{Pt}$
(b) $\mathrm{Pt}, \mathrm{B}^{-}\left|\mathrm{B}^{2-}\right|\left|\mathrm{C}^{-}\right| \mathrm{C}^{3-}, \mathrm{Pt}$
(c) $\mathrm{Pt}, \mathrm{D}^{-}\left|\mathrm{D}^{2-}\right|\left|\mathrm{C}^{-}\right| \mathrm{C}^{3-}, \mathrm{Pt}$
(d) $\mathrm{Pt}, \mathrm{A}\left|\mathrm{A}^{-}\right|\left|\mathrm{B}^{-}\right| \mathrm{B}^{2-}, \mathrm{Pt}$
14. I_{2} and Br_{2} are added in a solution containing l and $\mathrm{Br}^{\text {r }}$ ions. The reaction that occurs is

(a) $2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$
(b) $2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-}$
(c) $2 \mathrm{I}^{-}+\mathrm{Br}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{Br}$
(d) $2 \mathrm{Br}^{-}+\mathrm{I}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{I}^{-}$
15. If $\mathrm{Fe}^{2+}+\mathrm{FeO}^{2+}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{E}_{1}{ }^{0}=0.616 \mathrm{~V}$
$\mathrm{Fe}^{3+}+\mathrm{Ag}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{FeO}^{2+}+2 \mathrm{H}^{+}+\mathrm{Ag}_{(\mathrm{s})} ; \mathrm{E}_{2}{ }^{0}=0.439 \mathrm{~V}$
And $\mathrm{E}^{0} \mathrm{Ag} \mid \mathrm{Ag}=0.799$, then the standard reduction potential for $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$ is
(a) -0.256 V
(b) -0.059 V
(c) -0.721
(d) +0.721 V
$\mathrm{C}_{16 \text { - 18: }}$ Paragraph for Question Nos. 16 - 18
The magnetic behaviour, Colour and shape of complexes depend upon the nature of the metal, nature of ligands, hybridization and the coordination number of central atom.

Weak ligands like $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{H}_{2} \mathrm{O}$ and oxalate form outer orbital complexes while strong ligands like $\mathrm{CO}, \mathrm{CN}^{-}, \mathrm{NH}_{3}$ and $\mathrm{NO}_{2}{ }^{-}$use inner orbitals to form complexes. The completes exhibit optical and geometrical isomerism.
16. The complex that will exhibit both geometrical and optical isomerism is
(a) $\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}$
(b) $\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
(d) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
17. The complex that will have four isomers is
(a) $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$
(b) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(d) $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
18. The number of unpaired electrons present in $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ are
(a) 2, 0
(b) 0,2
(c) 2, 2
(d) 0,0

Section IV

Matching type: Multiple matching may be there. (+8/ 0)
This section contains 2 questions. And the questions contains statements given in two columns which have to be matched. Statements (a, b, c, d) in Column I have to be matched with statements (p, q, r, s) in Column II.
19.

Column - I

Column - II

(a) 1 M glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ solution
(p) 180 g solute per litre of solution
(b) $3 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution
(q) $\% w / v=18 \%$ solution
(c) $2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution (density $=1.2 \mathrm{~g} / \mathrm{ml}$)
(r) $\% w / w=10 \%$ solution
(d) 3 M Urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ solution
(s) 1.85 m
20.

Column I

(a) H_{2} gas at NTP
(b) O_{2} gas having density $=10 / 7 \mathrm{~g} / \mathrm{L}$ at NTP
(c) An unknown gas at 1 atm having Boyle's temperature 273.15K
(d) He gas at NTP having density less Than $1 / 5.6 \mathrm{~g} / \mathrm{L}$.

Column II

(p) Molar volume $=22.4 \mathrm{~L}$
(q) Molar volume > 22.4 L
(r) Behaves as an ideal gas
(s) Less compressible with respect to ideal gas

