Class – X Math Assignment Linear Equations

1

- 1. $\frac{x}{2} + 3 > \frac{x}{3} 1$
- 2. $-4 \le \frac{1-2x}{3} \le 4$ Also find number of integral values of x satisfying given inequality
- $3. \qquad -2 \le 1 \frac{x}{3} + \frac{x}{4} \le 7$
- 4. $1 + \frac{3x}{2} \frac{2x}{3} \le 2 + x$
- 5. Solve for x and y 7x - 5y = 11, 3x + 4y = 17
- 6. Solve for x and y
 - $\frac{x+1}{2}+\frac{y-1}{3}=8, \quad \frac{x-1}{3}+\frac{y+1}{2}=9$
- 7. Solve the pair of equations :
 - $\frac{2}{x} + \frac{3}{y} = 13$ $\frac{5}{x} \frac{4}{y} = -2$
- 8. Solve the following system of equations by the method of elimination using substitution :

$$(a + b)x + (a - b) y = a^{2} + b^{2}$$

 $(a - b)x + (a + b) y = a^{2} + b^{2}$

- 9. Solve for x and y 4x - 8y = -47x - 14y = -7
- 10. Solve the following pair of equations by reducing them to a pair of linear equations:

$$\frac{1}{x-1} + \frac{1}{y-2} = 2$$
$$\frac{6}{x-1} - \frac{3}{y-2} = 1$$

11. Solve: $\frac{1}{2(2x+3y)} + \frac{12}{7(3x+2y)} = \frac{1}{2}$ $\frac{7}{2x+3y} + \frac{4}{3x-2y} = 2$ Where $2x + 3y \neq 0$ and $3x - 2y \neq 0$

DISHA CLASSES Guiding you to Success

- 12. Solve: $2x^2 + 3y^2 = 35$; $\frac{x^2}{2} + \frac{y^2}{3} = 5$
- 13. Solve the following pair of linear equations by the substitution method. (i) 0.2 x + 0.3y = 1.3, 0.4x + 0.5y = 2.3(ii) $\sqrt{2x} + \sqrt{3}y = 0$, $\sqrt{3} x - \sqrt{x}y = 0$
- 14. Solve the following pair of linear equations by the elimination method and the substitution method. $\frac{x}{2} + \frac{2y}{3} = -1 \text{ and } x - \frac{y}{3} = 3$
- 15. Solve the following pairs of equations by reducing them to a pair of linear equations.

(i)
$$\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$$
, $\frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} = -1$
(ii) $\frac{10}{x+y} + \frac{2}{x-y} = 4$, $\frac{15}{x+y} - \frac{5}{x-y} = -2$
(iii) $\frac{1}{3x+y} + \frac{1}{3x-y} = \frac{3}{4}$, $\frac{1}{2(3x+y)} - \frac{1}{2(3x-y)} = \frac{-1}{8}$

ANSWER

1. x ∈ (−24, ∞)	2. $\mathbf{x} \in \left[-\frac{11}{2}, \frac{13}{2}\right]$ and 12
3. x ∈ [−72, 36]	4. x ∈ [−6, ∞]
5. $x = 3, y = 2$	6. x = 7, y = 13
7. $x = \frac{1}{2}$ and $y = \frac{1}{3}$	8. $x = \frac{a^2 + b^2}{2a}$, $y = \frac{a^2 + b^2}{2a}$
9. – 28	10. $x = \frac{16}{7}$, $y = \frac{31}{11}$
11. $x = 2, y = 1$ 12. $x = \pm 2, y = \pm 3$	13. (i) $x = 2$ and $y = 3$ (ii) $x = 0$ and $y = 0$
14. $x = 2$ and $y = -3$	15. (i) $x = 4, y = 9$ (ii) $x = 3, y = 2$ (iii) $x = 1, y = 1$

2