1. If $A=\left(\begin{array}{cc}-2 & 1 \\ 3 & 2\end{array}\right)$ and $B^{\prime}=\left(\begin{array}{cc}-1 & 1 \\ 0 & 2\end{array}\right)$, find $(A+B)^{\prime}$.

1 mark
2. If a and b are two vectors of magnitude 3 and $2 / 3$ respectively such that $a \times b$ is a unit vector, write the angle between a and b.

1 mark
3. Write the distance between the parallel planes $2 x-y+3 z=4$ and $2 x-y+3 z=18$. 1 mark
4. What is the principal value of $\cos ^{-1}\left(\cos \frac{3 \pi}{4}\right)+\sin ^{-1}\left(\sin \frac{3 \pi}{4}\right)$? 1 mark
5. Probabilities of solving specific problem independently by A and B are $1 / 2$ and $1 / 3$ respectively. If both try to solve the problem independently, find the probability that the problem is solved.
6. If * is a binary operation on N defined as $a * b=L C M$ of a and b, find $(2 * 3) * 4$.

1 mark
7. Prove that the tangents to the curve $y=x^{3}+9$ at the points $(-1,5)$ and $(1,-1)$ are parallel.
8. Find whether $y=\frac{a}{x}+b$ is a solution of $\frac{d^{2} y}{d x^{2}}+\frac{2}{x}\left(\frac{d y}{d x}\right)=0$.
9. If a matrix has 9 elements, write all possible orders it can have.

1 mark
10. Write the value of $\int_{0}^{\pi} \cos ^{5} x d x$.
11. Evaluate $\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x$. 4 marks
12. Show that $\sin \left[\cot ^{-1}\left\{\cos \left(\tan ^{-1} x\right)\right\}\right]=\sqrt{\frac{x^{2}+1}{x^{2}+2}}$

Solve for $x, 3 \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)-4 \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+2 \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}$
13. If $\cos y=x \cos (a+y), \cos a \neq 1$, prove that $\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}$

Evaluate $\int_{-a}^{a} \sqrt{\frac{a-x}{a+x}} d x$.
14. Find the equation of the plane passing through the point (1, 1, - 1) and
perpendicular to the planes

OR

Find the distance of the point $(3,4,5)$ from the plane $x+y z=2$ measured parallel to the line $2 x=y=z$
22. Solve the following differential equation

$$
y e^{x / y} d x=\left(x e^{x / y}+y\right) d y
$$

23. Find the particular solution of the differential equation $(x-\sin y) d y+(\tan y) d x=0$. Give, that, $\mathrm{y}=0$ when $\mathrm{x}=0$.
24. If $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and $\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$

Find $A B$. Use the result to solve the following system of linear equations
$2 x-y+z=-1 ;-x+2 y-z=4 ; x-y+2 z=-3$
25. Suppose a girl throws a die. If she gets a 5 or 6 , she tosses a coin 3 times and notes the number of heads. If she gets $1,2,3$ or 4 , she tosses a coin once and notes whether a head or tail is obtained. If she obtained exactly one head, what is the probability that she threw $1,2,3$ or 4 with the die?
26. A toy manufacturer produces two types of toys; a basic version toy A and a deluxe version toy B. Each toy of type B takes twice as long to produce as one toy of type A. The company has time to make a maximum of 2000 toys of type A per day, the supply of plastic is sufficient to produce 1500 toys per day and each type requires equal amount of it. Type B requires a fency dress of which there are only 600 per day available. If the company makes a profit of Rs. 30 and Rs. 50 per toy, respectively on A and B, how many of each type should be produced per day in order to maximize profit? Make an LPP and solve it graphically.
27. In an activity organized in the school, Rohan was given the task to put the slogan 'Satyamev Jayte' on a trapezium shaped card sheet. If length of three sides of a trapezium other than base are equal 10 cm , then find the area of the trapezium when it is maximum. Explain the meaning of 'Satyamev Jayte'.
28. Evaluate $\int_{-\pi}^{\pi} \frac{2 x(1+\sin x)}{1+\cos ^{2} x} d x$.
29. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $r=2 i-j+2 k+\lambda(3 i+4 j+2 k)$ and the plane $r \cdot(i-j+k)=5$.
Evaluate $\int_{-1}^{1} \mathrm{e}^{\mathrm{x}} \mathrm{dx}$ as a limit of sums.

